

 Navigation

 	
 index

 	
 next |

 	Playdoh 0.3.1 documentation

Welcome to Playdoh’s documentation!

Playdoh is a pure Python library for distributing
computations across the free computing units (CPUs and GPUs) available in a small network
of multicore computers. Playdoh
supports independent (embarassingly) parallel problems as well as loosely coupled
tasks such as global optimizations, Monte Carlo simulations and numerical integration of
partial differential equations. It is designed to be lightweight and easy to use and
should be of interest to scientists wanting to turn their lab computers into a small
cluster at no cost.

	Playdoh User Guide
	Quick Start

	Using several computers

	Advanced features

	Examples
	Independent parallel problems

	Optimization

	Loosely coupled parallel problems

	Resource allocation

	Playdoh Reference
	Main functions and classes

	Other functions and classes

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Playdoh User Guide

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

Playdoh User Guide

Playdoh is a pure Python library for distributing
computations across the free computing units (CPUs and GPUs) available in a small network
of multicore computers. Playdoh
supports independent (embarassingly) parallel problems as well as loosely coupled
tasks such as global optimizations, Monte Carlo simulations and numerical integration of
partial differential equations. It is designed to be lightweight and easy to use and
should be of interest to scientists wanting to turn their lab computers into a small
cluster at no cost.

This user guide is an introduction to Playdoh. It shows how to distribute
independent parallel tasks, how to distribute optimizations, and how to write loosely coupled parallel
tasks.

See also

Reference documentation Playdoh Reference.

Quick Start

Installation

First of all, you should have Python 2.6 [http://www.python.org/] installed on
your machine with Numpy 1.3 [http://numpy.scipy.org/] at least
(Playdoh is currently not available for Python 3).
Then, go to the download page [http://code.google.com/p/playdoh/downloads/list] and download the archive or the executable if you’re on Windows.
Finally, install the package with the Windows executable or with the following command:

python setup.py install

You can also run in a console:

easy_install playdoh

The installation script requires the Python package setuptools [http://pypi.python.org/pypi/setuptools]
so that the command-line tool included in Playdoh can be automatically installed. The setuptools package
should be automatically installed when you install Playdoh.
The installation script automatically installs the following tools: playdoh and playdoh_gui,
which are a command-line tool and a GUI, respectively.

All scripts using Playdoh should start by importing the Playdoh package as follows:

from playdoh import *

Independent parallel problems

Playdoh offers a parallel and distributed implementation of the map() function
to quickly evaluate a single Python function against several sets of parameters,
across several CPUs and machines.

The following example shows how to distribute the function y=x**2 across two CPUs:

from playdoh import *

The function to parallelize
def fun(x):
 return x**2

This line is required on Windows, any call to a Playdoh function
must be done after this line on this OS.
See http://docs.python.org/library/multiprocessing.html#windows
if __name__ == '__main__':
 # Execute ``fun(1)`` and ``fun(2)`` in parallel on two CPUs on this machine
 # and return the result.
 print map(fun, [1,2], cpu=2)

See also

Reference for map(), examples for Independent parallel problems.

Optimization

Playdoh offers two functions minimize() and maximize() to quickly optimize
a Python objective function (fitness) in parallel across several CPUs and several
machines. Three optimization algorithms are available: the particle swarm optimization PSO,
the covariance matrix adaptation evolution strategy CMAES,
and an island genetic algorithm GA

The following example shows how to maximize a Gaussian function in one dimension
across 2 CPUs:

from playdoh import *
import numpy

The fitness function to maximize
def fun(x):
 return numpy.exp(-x**2)

if __name__ == '__main__':
 # Maximize the fitness function in parallel
 results = maximize(fun,
 popsize = 10000, # size of the population
 maxiter = 10, # maximum number of iterations
 cpu = 2, # number of CPUs to use on the local machine
 x_initrange = [-10.,10.]) # initial interval for the ``x`` parameter

 # Display the final results in a table
 print_table(results)

See also

Reference for maximize(), minimize(), examples for Optimization.

Loosely coupled parallel problems

Some computational tasks cannot be distributed using the independent
parallel interface of Playdoh but require some communication between subtasks
and the introduction of synchronisation
points. Playdoh offers a simple programming
interface to do this.

The following example shows an implementation of a numerical solver of a
partial differential equation (the heat equation) in parallel across several CPUs.
There are two steps.

	First, the task itself must be written: it is a
Python class which actually performs the computation. Every computing
unit (node) stores and executes its own instance.
Communication between nodes happens through tubes, which are one-way named FIFO
queues between two nodes. The source puts any Python object in the tube with
a push, and the target gets objects in the tube
with a (blocking) pop. This allows a simple implementation
of synchronisation barriers.

	Then, the task launcher
executes on the client and launches the task on the CPUs on the local
machine or on several machines across the network.
It is done by calling the Playdoh function
start_task(). Here, we launch the task on two CPUs on the local machine.
The start_task() function triggers the instantiation of the
class on every node, the call to the initialize method with
the arguments given in the args keyword argument,
and finally the call to the start method.

The full script:

from playdoh import *
from numpy import *
from pylab import *

Any task class must derive from the ParallelTask
class HeatSolver(ParallelTask):
 def initialize(self, X, dx, dt, iterations):
 # X is a matrix with the function values and the boundary values
 # X must contain the borders of the neighbors ("overlapping Xs")
 self.X = X
 self.n = X.shape[0]
 self.dx = dx
 self.dt = dt
 self.iterations = iterations
 self.iteration = 0

 def send_boundaries(self):
 # Send boundaries of the grid to the neighbors
 if 'left' in self.tubes_out:
 self.push('left', self.X[:,1])
 if 'right' in self.tubes_out:
 self.push('right', self.X[:,-2])

 def recv_boundaries(self):
 # Receive boundaries of the grid from the neighbors
 if 'right' in self.tubes_in:
 self.X[:,0] = self.pop('right')
 if 'left' in self.tubes_in:
 self.X[:,-1] = self.pop('left')

 def update_matrix(self):
 # Implement the numerical scheme for the PDE
 Xleft, Xright = self.X[1:-1,:-2], self.X[1:-1,2:]
 Xtop, Xbottom = self.X[:-2,1:-1], self.X[2:,1:-1]
 self.X[1:-1,1:-1] += self.dt*(Xleft+Xright+Xtop+Xbottom-4*self.X[1:-1,1:-1])/self.dx**2

 def start(self):
 # Run the numerical integration of the PDE
 for self.iteration in xrange(self.iterations):
 self.send_boundaries()
 self.recv_boundaries()
 self.update_matrix()

 def get_result(self):
 # Return the result
 return self.X[1:-1,1:-1]

def heat2d(n, iterations, nodes):
 # ``split`` is the grid size on each node, without the boundaries
 split = [(n-2)*1.0/nodes for _ in xrange(nodes)]
 split = array(split, dtype=int)
 split[-1] = n-2-sum(split[:-1])

 dx=2./n
 dt = dx**2*.2

 # y is a Dirac function at t=0
 y = zeros((n,n))
 y[n/2,n/2] = 1./dx**2

 # Split y horizontally
 split_y = []
 j = 0
 for i in xrange(nodes):
 size = split[i]
 split_y.append(y[:,j:j+size+2])
 j += size

 # Define a double linear topology
 topology = []
 for i in xrange(nodes-1):
 topology.append(('right', i, i+1))
 topology.append(('left', i+1, i))

 # Start the task
 task = start_task(HeatSolver, # name of the task class
 cpu = nodes, # use ``nodes`` CPUs on the local machine
 topology = topology,
 args=(split_y, dx, dt, iterations)) # arguments of the ``initialize`` method

 # Retrieve the result, as a list with one element returned by ``HeatSolver.get_result`` per node
 result = task.get_result()
 result = hstack(result)

 return result

if __name__ == '__main__':
 result = heat2d(50, 100, 2)
 hot()
 imshow(result)
 show()

See also

Reference for start_task(), ParallelTask, examples for Loosely coupled parallel problems.

Using several computers

Launching the Playdoh server

Any computer within your local Ethernet network can be used to run computations
with Playdoh. First, Python and Playdoh must be installed. Then, the Playdoh
server must run so that computations can be submitted to it. Finally,
when you launch a task, you can specify the special keyword machines
which is a list containing the IP addresses of the machines to use.

To launch the Playdoh server, you have two options.

Using Python

Use the open_server() function to start the Playdoh server:

Open the server on the default port, using 4 CPUs and 1 GPU
open_server(maxcpu=4, maxgpu=1)

You can close a server remotely using the close_servers() function:

Close the bobs-machine.university.com server
close_servers(['bobs-machine.university.com'])

Using the command-line tool

You can use the playdoh command-line tool:

Open the server on the default port, using all CPUs and GPUs available
playdoh open

Open the server with 2 CPUs and 1 GPU
playdoh open 2 CPUs 1 GPU

You can also close servers and allocate resources using this script.

See also

Reference Command line tool.

Sharing resources

A single computer running the Playdoh server can be used py several clients
in parallel to execute different tasks. The computers’ resources need to
be shared among the clients. To do this, each client begins by allocating
on the server
the number of CPUs he wants for his own computation, among all the idle CPUs
on this machine. You have three options.

Using Python

Resource allocation can be done using a few functions defined in Playdoh, most notably
get_available_resources() to get the resources available on a server, and
request_resources() to allocate resources on a server:

Get the available resources on the specified server
available_resources = get_available_resources('bobs-machine.university.com')

Allocate 2 CPUs on the server
request_resources('bobs-machine.university.com', CPU=2)

See also

Resource allocation example Example: resources, reference Resource allocation.

Using the client GUI

Resource allocation can be done with a GUI included in Playdoh and which can be run
with the command playdoh_gui.

Using the command-line tool

The command-line tool also allows to allocate resources on servers:

obtain the available resources on server 'bobs-machine.university.com'
playdoh get bobs-machine.university.com

obtain all the allocated resources on the server
playdoh get bobs-machine.university.com all

request 2 CPUs and 1 GPU for this client
playdoh request bobs-machine.university.com 2 CPUs 1 GPU

See also

Reference Command line tool.

Server-side

If you run a Playdoh server on your own computer, you can specify how many resources you allocated
to others. First, you can do that when you launch the Playdoh server (see Launching the Playdoh server).
Then, when a server is running on your machine, you can change the total number of available
resources on your server with the function
set_total_resources(). Finally, you can also use the command-line tool, like:

playdoh set 2 CPUs 1 GPU

See also

Reference Command line tool.

Advanced features

Global variables

Playdoh defines several global variables.

	MAXCPU

	The total number of CPUs detected on this computer

	MAXGPU

	The total number of GPUs detected on this computer (PyCUDA must be installed). Note also that
PyCUDA must be first initialized with a call to the function MAXGPU = initialise_cuda()
so that PyCUDA can obtain the number of GPUs available on the current system. You can also
get the total number of GPUs without initializing PyCUDA on the current process with a call to
get_gpu_count().

	DEFAULT_PORT

	The default port to use for the Playdoh server.

	USERPREF

	User preferences dictionary.

See also

User preferences.

User preferences

You can define some user preferences in the file ~/.playdoh/userpref.py.
The character ~ refers to your home directory, which should be /usr/<username>
on Linux and C:\Users\<username\ on Windows.

Current preferences are:

	authkey

	Authentication key used to secure communications within the network. This value must
be the same on every computer. By default, it is playdohauthkey. You should generate
your own key and share it with anyone who might submit computations to your computer.
The following code snippet shows a way of generating a random 256 bits authentication key
in Python:

import os, binascii
authkey = binascii.hexlify(os.urandom(32))

	port

	Default port used by the Playdoh server. It is 2718 by default.

	loglevel

	Logging level. Can be 'DEBUG', 'INFO' (default) or 'WARNING'.

	favoriteservers

	List of your servers’ IP addresses and ports presented by default in the client GUI,
under the form IP:port. Default is [].

Here’s an example of a valid user preferences file:

USERPREF = {}
USERPREF['port'] = 3141

To retrieve user preferences in the code, use the global variable USERPREF
as a dictionary:

from playdoh import *
print USERPREF['port']

Using GPUs

GPUs are natively supported by Playdoh through the PyCUDA package. It means that
your functions can load CUDA code dynamically and run it, so that you can use
several GPUs on a single or on several machines in parallel. GPUs can be used for both
independent parallel problems and loosely coupled parallel problems (including optimizations).

When loading CUDA code with PyCUDA, you can use the standard functions of PyCUDA to do it
but you should never initialize the GPU drivers yourself: Playdoh takes care of that
so that several GPUs can be handled transparently. Here’s an example of a function using PyCUDA
and that can be safely distributed with Playdoh:

import pycuda

The function loading the CUDA code
def fun(scale):
 # The CUDA code, which multiplies a vector by a scale factor.
 code = '''
 __global__ void test(double *x, int n)
 {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if(i>=n) return;
 x[i] *= %d;
 }
 ''' % scale

 # Compile the CUDA code to GPU code
 mod = pycuda.compiler.SourceModule(code)

 # Transform the CUDA function into a Python function
 f = mod.get_function('test')

 # Create a vector on the GPU filled with 8 ones
 x = pycuda.gpuarray.to_gpu(ones(8))

 # Start the function on the GPU
 f(x, int32(8), block=(8, 1, 1))

 # Load the result from the GPU to the CPU
 y = x.get()

 # Finally, return the result
 return y

Warning

On Linux, you may experience an issue with the CUDA code not compiling. You can fix this problem
using do_redirect=True in the Playdoh function (map(), minimize(), etc.).

See also

The full example Example: gpu, the PyCUDA website [http://mathema.tician.de/software/pycuda].

Resource allocation

Resource allocation is the way computing units (CPUs and GPUs on machines)
are allocated to clients’ computations. It can be done either manually
or automatically. In the latter case, one specifies the machines
and the total number of computing units to use.

The main Playdoh functions accept
special keywords cpu, gpu, machines to
tell Playdoh how to automatically allocate available resources.
Also, they accept the keyword allocate to do resource allocation
manually. In this case, this keyword must accept an Allocation object
returned by the function allocate(). Manual resource allocation
is done by specifying the number of units to use on every machine.

The following example shows how to allocate automatically 10 CPUs on
two machines:

from playdoh import *
allocation = allocate(machines=['127.0.0.1', '127.0.0.2'], cpu=10)

This object can then be passed to map() or other Playdoh functions.

In the next example, resource allocation is done manually:

from playdoh import *
manual_alloc = {'127.0.0.1': 3, '127.0.0.2': 7}
allocation = allocate(unit_type='CPU', allocation=manual_alloc)

See also

allocate().

Shared data

Nodes running on different computers need to have independent
copies of data in memory, but nodes running on different CPUs on a same computer
may have access to shared memory. With Playdoh, it is possible to store some
NumPy arrays in shared memory. This can be more efficient than having in memory
as many copies of one array as processes, especially with very
large NumPy arrays. However, such shared arrays need to be read-only in order to avoid
contention issues when several processes try to make changes to the same data
at the same time.

Shared data can be used with map(), minimize() and
maximize() functions, using the shared_data keyword.
This argument is a dictionary where keys are the item names,
and values are NumPy arrays (or any other type of data).
Then, the task to be executed can retrieve the shared data with the same
shared_data keyword:

from playdoh import *
from numpy.random import rand

def fun(..., shared_data):
 largearray = shared_data['largearray']

map(fun, ..., shared_data={'largearray': rand(1000000)})

See also

Example: map_shared

With optimizations, the fitness function can also accept a special keyword shared_data.

Code transport

When distributing a Python function with Playdoh using several machines, the function’s code
is automatically retrieved and sent to the machines. When the function imports external Python
packages, these packages need to be installed on every machine.
When the function imports external Python modules (.py files), these modules must be
explicitely specified so that they are also transferred to the other machines. This is
done using the codedependencies special keyword in the main Playdoh functions.
This argument is a list with the modules’ filenames, relatively to the main function location
in the filesystem.

The following example shows how to use the map() function with an import of
an external module:

from playdoh import *

Import an external module in the same folder
from external_module import external_fun

The function to parallelize
def fun(x):
 # Use the function defined in the external module
 return external_fun(x)**2

This line is required on Windows, any call to a Playdoh function
must be done after this line on this OS.
See http://docs.python.org/library/multiprocessing.html#windows
if __name__ == '__main__':
 # Execute ``fun(1)`` and ``fun(2)`` in parallel on two CPUs on this machine
 # and return the result.
 # The ``codedependencies`` argument contains the list of external Python modules
 # to transfer on the machines executing the task. It is only needed when using
 # remote machines, and not when using CPUs on the local machine.
 print map(fun, [1,2], codedependencies=['external_module.py'])

This also works with the minimize() and maximize() functions.

See also

The full example Example: map_dependencies and the reference of map().

Optimization information

Some information about the optimization can be returned by the minimize()
and maximize() functions by specifying the returninfo=True special keyword.

See also

Reference for the minimize() and maximize() functions.

Optimization groups

Several groups of parameter populations can be optimized independently and
in parallel with the same fitness function. This allows a vectorization
of the fitness function for different optimization runs. The number of groups
is specified with the groups special keyword in the minimize() and
maximize() functions. The fitness function can accept the groups
keyword to get the number of groups. The total population on the node
is equally subdivided into groups subpopulations.

See also

Example: maximize_groups, reference for the minimize() and maximize() functions.

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Examples

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

Examples

These examples cover some basic topics in using Playdoh.
The complete source code for the examples is available in the examples folder.

Independent parallel problems

	Example: map

	Example: map_async

	Example: map_dependencies

	Example: map_lambda

	Example: map_shared

	Example: gpu

Optimization

	Example: maximize

	Example: maximize_matrix

	Example: maximize_class

	Example: maximize_groups

Loosely coupled parallel problems

	Example: monte_carlo

	Example: heat_equation

Resource allocation

	Example: allocation

	Example: resources

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: map

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: map

Simple example of the map() function.

from playdoh import *

The function to parallelize
def fun(x):
 return x ** 2

This line is required on Windows, any call to a Playdoh function
must be done after this line on this OS.
See http://docs.python.org/library/multiprocessing.html#windows
if __name__ == '__main__':
 # Execute ``fun(1)`` and ``fun(2)`` in parallel on two CPUs on this machine
 # and return the result.
 print map(fun, [1, 2], cpu=2)

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: map_async

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: map_async

Example usage of the asynchronous version of map().

from playdoh import *
import time

The function to parallelize
def fun(x):
 # Simulate a 1 second long processing
 time.sleep(1)
 return x ** 2

This line is required on Windows, any call to a Playdoh function
must be done after this line on this OS.
See http://docs.python.org/library/multiprocessing.html#windows
if __name__ == '__main__':
 # Execute ``fun(1)`` and ``fun(2)`` in parallel on two CPUs on this
 # machine.
 # The ``map_async`` function returns immediately a ``Task`` object
 # which allows to get the results later.
 task = map_async(fun, [1, 2], cpu=2)

 # Get the job results
 print task.get_result()

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: map_dependencies

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: map_dependencies

Example usage of map() with a function that has module dependencies.

from playdoh import *

Import an external module in the same folder
from external_module import external_fun

The function to parallelize
def fun(x):
 # Use the function defined in the external module
 return external_fun(x) ** 2

This line is required on Windows, any call to a Playdoh function
must be done after this line on this OS.
See http://docs.python.org/library/multiprocessing.html#windows
if __name__ == '__main__':
 # Execute ``fun(1)`` and ``fun(2)`` in parallel on two CPUs on this machine
 # and return the result.
 # The ``codedependencies`` argument contains the list of external Python
 # modules
 # to transfer on the machines executing the task. It is only needed when
 # using
 # remote machines, and not when using CPUs on the local machine.
 print map(fun, [1, 2], codedependencies=['external_module.py'])

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: map_lambda

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: map_lambda

Simple example of the map() function with a lambda function.

from playdoh import *

This line is required on Windows, any call to a Playdoh function
must be done after this line on this OS.
See http://docs.python.org/library/multiprocessing.html#windows
if __name__ == '__main__':
 # Execute ``lambda(1)`` and ``lambda(2)`` in parallel on two CPUs
 # on this machine
 # and return the result.
 print map(lambda x: x * x, [1, 2], cpu=2)

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: map_shared

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: map_shared

Example usage of the map() function with shared data.

from playdoh import *
from numpy.random import rand

The function to parallelize. The extra argument ``shared_data`` is a
read-only dictionary
residing is shared memory on the computer. It can contain large NumPy arrays
used by
all the CPUs to execute the function.
def fun(x, shared_data):
 return x + shared_data['x0']

This line is required on Windows, any call to a Playdoh function
must be done after this line on this OS.
See http://docs.python.org/library/multiprocessing.html#windows
if __name__ == '__main__':
 # Execute two function evaluations with a large NumPy array in shared data.
 map(fun,
 [rand(100000, 2), rand(100000, 2)],
 cpu=2,
 shared_data={'x0': rand(100000, 2)})

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: gpu

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: gpu

Example of map() with a function loading CUDA code and running on GPUs.

from playdoh import *
from numpy import *
import pycuda

The function loading the CUDA code
def fun(scale):
 # The CUDA code, which multiplies a vector by a scale factor.
 code = '''
 __global__ void test(double *x, int n)
 {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if(i>=n) return;
 x[i] *= %d;
 }
 ''' % scale

 # Compile the CUDA code to GPU code
 mod = pycuda.compiler.SourceModule(code)

 # Transform the CUDA function into a Python function
 f = mod.get_function('test')

 # Create a vector on the GPU filled with 8 ones
 x = pycuda.gpuarray.to_gpu(ones(8))

 # Start the function on the GPU
 f(x, int32(8), block=(8, 1, 1))

 # Load the result from the GPU to the CPU
 y = x.get()

 # Finally, return the result
 return y

This line is required on Windows, any call to a Playdoh function
must be done after this line on this OS.
See http://docs.python.org/library/multiprocessing.html#windows
if __name__ == '__main__':
 # Execute ``fun(2)`` and ``fun(3)`` on 1 GPU on this machine
 # and return the result.
 if CANUSEGPU:
 print map(fun, [2, 3], gpu=1)

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: maximize

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: maximize

Simple example of maximize().

from playdoh import *
import numpy

The fitness function to maximize
def fun(x):
 return numpy.exp(-x ** 2)

if __name__ == '__main__':
 # Maximize the fitness function in parallel
 results = maximize(fun,
 popsize=10000, # size of the population
 maxiter=10, # maximum number of iterations
 cpu=1, # number of CPUs to use on the local machine
 x_initrange=[-10, 10]) # initial interval for
 # the ``x`` parameter

 # Display the final result in a table
 print_table(results)

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: maximize_matrix

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: maximize_matrix

Example of maximize() with a fitness function accepting arrays
rather than keyword arguments.

from playdoh import *
import numpy

def fun(x):
 if x.ndim == 1:
 x = x.reshape((1, -1))
 result = numpy.exp(-(x ** 2).sum(axis=0))
 return result

if __name__ == '__main__':
 # State space dimension (D)
 dimension = 4

 # ``initrange`` is a Dx2 array with the initial intervals for every
 # dimension
 initrange = numpy.tile([-10., 10.], (dimension, 1))

 # Maximize the fitness function in parallel
 results = maximize(fun,
 popsize=10000, # size of the population
 maxiter=10, # maximum number of iterations
 cpu=1, # number of CPUs to use on the local machine
 initrange=initrange)

 # Display the final result in a table
 print_table(results)

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: maximize_class

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: maximize_class

Example of maximize() by using a fitness function implemented in a class.
Using a class allows to have an initialization at the beginning of the
optimization.

from playdoh import *
from numpy import exp, tile

The class must derive from the ``Fitness`` class.
class FitnessTest(Fitness):
 # This method allows to initialize some data. Parameters
 # can be passed using the ``initargs`` and ``initkwds``
 # arguments of ``maximize``.
 def initialize(self, a):
 self.a = a

 # This method is called at every iteration.
 def evaluate(self, x):
 return exp(-((x - self.a) ** 2))

if __name__ == '__main__':
 # Maximize the fitness function in parallel
 results = maximize(FitnessTest,
 popsize=10000, # size of the population
 maxiter=10, # maximum number of iterations
 cpu=1, # number of CPUs to use on the local machine
 args=(3,), # parameters for the ``initialize`` method
 x_initrange=[-10, 10]) # initial interval for the
 # ``x`` parameter

 # Display the final result in a table
 print_table(results)

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: maximize_groups

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: maximize_groups

Example of maximize() with several groups. Groups allow to optimize
a fitness function with different parameters in parallel but by
vectorizing the fitness evaluation for all groups.

from playdoh import *
import numpy

The fitness function is a Gaussian with different centers for
different groups ``shared_data`` contains the different centers.
def fun(x, y, nodesize, shared_data, groups):
 # Expand ``x0`` and ``y0`` to match the total population size
 x0 = numpy.kron(shared_data['x0'], numpy.ones(nodesize / groups))
 y0 = numpy.kron(shared_data['y0'], numpy.ones(nodesize / groups))
 # Compute the Gaussian for all centers in a vectorized fashion
 result = numpy.exp(-(x - x0) ** 2 - (y - y0) ** 2)
 return result

if __name__ == '__main__':
 # Maximize the fitness function in parallel
 results = maximize(fun,
 popsize=50, # size of the population for each group
 maxiter=10, # maximum number of iterations
 cpu=1, # number of CPUs to use on the local machine
 groups=3, # number of groups
 algorithm=CMAES, # optimization algorithm, can be PSO,
 # GA or CMAES
 shared_data={'x0': [0, 1, 2], # centers of the Gaussian
 # for each group
 'y0': [3, 4, 5]},
 x_initrange=[-10, 10], # initial interval for the
 # ``x`` parameter
 y_initrange=[-10, 10]) # initial interval for the
 # ``y`` parameter

 # Display the final result in a table
 print_table(results)

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: monte_carlo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: monte_carlo

Monte Carlo simulation example of pi estimation.
This example shows how to use the Playdoh interface
to execute loosely coupled parallel tasks.

from playdoh import *
import numpy as np

Any task class must derive from the ParallelTask
class PiMonteCarlo(ParallelTask):
 def initialize(self, n):
 # Specify the number of samples on this node
 self.n = n

 def start(self):
 # Draw n points uniformly in [0,1]^2
 samples = np.random.rand(2, self.n)
 # Count the number of points inside the quarter unit circle
 self.count = np.sum(samples[0, :] ** 2 + samples[1, :] ** 2 < 1)

 def get_result(self):
 # Return the result
 return self.count

def pi_montecarlo(samples, nodes):
 # Calculate the number of samples for each node
 split_samples = [samples / nodes] * nodes
 # Launch the task on the local CPUs
 task = start_task(PiMonteCarlo, # name of the task class
 cpu=nodes, # use <nodes> CPUs on the local machine
 args=(split_samples,)) # arguments of
 # MonteCarlo.initialize
 # as a list,
 # node #i receives
 # split_samples[i]
 # as argument
 # Retrieve the result, as a list with one element returned
 # by MonteCarlo.get_result per node
 result = task.get_result()

 # Return the estimation of Pi
 return sum(result) * 4.0 / samples

if __name__ == '__main__':
 # Evaluate Pi with 10,000 samples and 2 CPUs
 print pi_montecarlo(1000000, 2)

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: heat_equation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: heat_equation

PDE parallel numerical solver.
This example shows how to numerically solve the heat equation on a square
in parallel.

from playdoh import *
from numpy import *
from pylab import *

Any task class must derive from the ParallelTask
class HeatSolver(ParallelTask):
 def initialize(self, X, dx, dt, iterations):
 # X is a matrix with the function values and the boundary values
 # X must contain the borders of the neighbors ("overlapping Xs")
 self.X = X
 self.n = X.shape[0]
 self.dx = dx
 self.dt = dt
 self.iterations = iterations
 self.iteration = 0

 def send_boundaries(self):
 # Send boundaries of the grid to the neighbors
 if 'left' in self.tubes_out:
 self.push('left', self.X[:, 1])
 if 'right' in self.tubes_out:
 self.push('right', self.X[:, -2])

 def recv_boundaries(self):
 # Receive boundaries of the grid from the neighbors
 if 'right' in self.tubes_in:
 self.X[:, 0] = self.pop('right')
 if 'left' in self.tubes_in:
 self.X[:, -1] = self.pop('left')

 def update_matrix(self):
 # Implement the numerical scheme for the PDE
 Xleft, Xright = self.X[1:-1, :-2], self.X[1:-1, 2:]
 Xtop, Xbottom = self.X[:-2, 1:-1], self.X[2:, 1:-1]
 self.X[1:-1, 1:-1] += self.dt * (Xleft + Xright + Xtop + Xbottom - \
 4 * self.X[1:-1, 1:-1]) / self.dx ** 2

 def start(self):
 # Run the numerical integration of the PDE
 for self.iteration in xrange(self.iterations):
 log_info("Iteration %d/%d" % (self.iteration + 1,
 self.iterations))
 self.send_boundaries()
 self.recv_boundaries()
 self.update_matrix()

 def get_result(self):
 # Return the result
 return self.X[1:-1, 1:-1]

def heat2d(n, iterations, nodes=None, machines=[]):
 # Default allocation
 allocation = allocate(machines=machines, cpu=nodes)
 nodes = len(allocation)

 # ``split`` is the grid size on each node, without the boundaries
 split = [(n - 2) * 1.0 / nodes for _ in xrange(nodes)]
 split = array(split, dtype=int)
 split[-1] = n - 2 - sum(split[:-1])

 dx = 2. / n
 dt = dx ** 2 * .2

 # y is a Dirac function at t=0
 y = zeros((n, n))
 y[n / 2, n / 2] = 1. / dx ** 2

 # Split y horizontally
 split_y = []
 j = 0
 for i in xrange(nodes):
 size = split[i]
 split_y.append(y[:, j:j + size + 2])
 j += size

 # Define a double linear topology
 topology = []
 for i in xrange(nodes - 1):
 topology.append(('right', i, i + 1))
 topology.append(('left', i + 1, i))

 # Start the task
 task = start_task(HeatSolver, # name of the task class
 topology=topology,
 allocation=allocation,
 args=(split_y, dx, dt, iterations)) # arguments of the
 # ``initialize``
 # method

 # Retrieve the result, as a list with one element returned
 # by ``MonteCarlo.get_result`` per node
 result = task.get_result()
 result = hstack(result)

 return result

if __name__ == '__main__':
 result = heat2d(50, 50, nodes=MAXCPU - 1)
hot()
imshow(result)
show()

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: allocation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: allocation

Resource allocation example showing how to allocate manually
resources on the servers.
The Playdoh server must run on the local machine and on
the default port (2718 by default)
for this script to work.

from playdoh import *

It can also be a list of server IP addresses
servers = 'localhost'

Allocate automatically the maximum number of resources on the
specified servers
alloc = allocate(servers)

alloc is an Allocation object, it can be used as a dictionary
for machine, count in alloc.iteritems():
 print "%d CPUs allocated on machine %s" % (count, str(machine))

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Example: resources

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Playdoh 0.3.1 documentation

 	Examples

Example: resources

Resource allocation example showing how to allocate resources on the servers.
The Playdoh server must run on the local machine and on the default port
(2718 by default)
for this script to work.

from playdoh import *

It can also be a list of server IP addresses
servers = 'localhost'

Get all the allocated resources on the servers
total_resources[0]['CPU'] is a dictionary where keys are client IP
addresses and values are the number of CPUs allocated to the corresponding
clients
total_resources = get_server_resources(servers)
print "Total allocated resources:", total_resources[0]['CPU']

Get the idle resources on the specified servers
idle_resources[0]['CPU'] is the number of CPUs available on the first server
This number includes the already allocated resources for this client
idle_resources = get_available_resources(servers)
print "%d idle CPUs" % idle_resources[0]['CPU']

Get the resources allocated to this client on the specified servers
my_resources['CPU'] is the number of CPUs allocated on the servers for this
client
my_resources = get_my_resources(servers)
print "%d CPUs allocated to me" % my_resources[0]['CPU']

Allocate as many CPUs as possible on the specified servers for this client
n = request_all_resources(servers, 'CPU')
print "Just allocated %d CPUs on the server" % n[0]

my_resources = get_my_resources(servers)
print "%d CPUs allocated to me now" % my_resources[0]['CPU']

total_resources = get_server_resources(servers)
print "Total allocated resources now:", total_resources[0]['CPU']

 Copyright 2011, Cyrille Rossant, Bertrand Fontaine, Dan Goodman.
 Last updated on Feb 13, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Playdoh Reference

 Navigation

 	
 index

 	
 previous |

 	Playdoh 0.3.1 documentation

Playdoh Reference

This page details the usage of the functions and classes of Playdoh.

See also

User guide for Playdoh User Guide.

Main functions and classes

This section details the usage of the Playdoh functions that
are used to launch computations.

Independent parallel problems

	
playdoh.map(fun, **kwds)

	Parallel version of the built-in map function.
Executes the function fun with the arguments *argss and
keyword arguments **kwdss across CPUs on one or several computers.
Each argument and keyword argument is a list with the arguments
of every job.
This function returns the result as a list, one item per job.
If an exception occurs within the function, map() returns
the Exception object as a result. This object has an extra attribute,
traceback, which contains the traceback of the exception.

Spe